Previous talk: Team 1

Parameter-space ReSTIR for Differentiable and Inverse Rendering

(spatial reuse is not used in ReSTIR DR)

A Gentle Introduction to ReSTIR: Path Reuse in Real-time, Wyman et al. ACM SIGGRAPH 2023 Courses

Previous talk: Team 4

Text2Tex: Text-driven Texture Synthesis via Diffusion Models

ECCV 2024

LGM: Large Multi-View Gaussian Model for High -Resolution 3D Content Creation

Team 3

Woo Won Jung, Shin Rim Soo

Outline

- 1. Overview of LGM
- 2. Multi view Generation
- 3. Gaussian Generation
- 4. Mesh Extraction
- 5. Result & limitation

Motivation

LGM: Over-view

Text/Image Input

Multi-view Generation ~ 4s

Multi-view Generation	Creates image
Gaussian Generation	Create Gauss
Mesh Extraction	Convert 3D Ga

Gaussian Generation ~ 1s Meshing ~ 1m

es of multiple views

ian from multiple view pixels

aussian into polygons

LGM: Multi-view Generation

Multi-view Generation

Creates images of multiple views

Gaussian Generation Create Gaussian from multiple view pixels

: framework that generates high quality 3D model from any viewpoint given a single image

: framework that generates high quality 3D model from any viewpoint given a single image

Training of the diffusion network
 Training of the NeRF model

: framework that generates high quality 3D model from any viewpoint given a single image

Input

A bulldog with a black pirate hat

(a) Global

: framework that generates high quality 3D model from any viewpoint given a single image

Input

(b) Local: w/o Resample

(c) Local: w Resample

: framework that generates high quality 3D model from any viewpoint given a single image

Input

A bulldog with a black pírate hat

(d) +Pixel

LGM: Multi-view Generation

Render Multi-view

Image Dream

Takes photo as an input toTakes text as an input tocreate images of multiple viewcreate images of multiple view

MVDream

Text/Image Input

Multi-view Generation ~ 4s

Multi-view Generation

Creates images of multiple views

Gaussian Generation ~ 1s Meshing ~ 1m

Gaussian Generation

Create Gaussian from multiple view pixels

: technique used in the field of real-time radiance field rendering, which represents scenes with 3D Gaussians

: (images from different views, camera position) -> (3D Gaussians)

$$f_i(p) = \sigma(\alpha_i) \exp(-\frac{1}{2}(p - \mu_i)\Sigma_i^{-1}(p - \mu_i))$$

$$F = \sigma(\alpha_i) \exp(-\frac{1}{2}(p - \mu_i)\Sigma_i^{-1}(p - \mu_i)$$

$$F = \sigma(\alpha_i) \exp(-\frac{1}{2}(p - \mu_i)\Sigma_i^{-1}(p - \mu_i)$$

an is parametrized by:

sition (x, y, z) = $RSS^T R^T$; (Scale S, Rotation R)

ers: spherical harmonics (SH) coefficients.

: (images from different views, camera position) -> (3D Gaussians)

9-channel feature map: color(RGB: 3), ray direction(3), ray origin(3)

: (images from different views, camera position) -> (3D Gaussians)

Asymmetric U-Net: residual block, cross-view self-attention

: (images from different views, camera position) -> (3D Gaussians)

Asymmetric U-Net: residual block, cross-view self-attention

: (images from different views, camera position) -> (3D Gaussians)

Asymmetric U-Net: residual block, cross-view self-attention

: (images from different views, camera position) -> (3D Gaussians)

Each feature map -> 14-channel Gaussian features * 14-channel: point cloud position (3), opacity (1), scale matrix (3), rotation matrix (4), color (3)

LGM: Mesh Extraction

Mesh extraction: Process of converting 3D gaussian into mesh

Gaussian Generation ~ 1s Meshing ~ 1m

: framework to reconstruct textured surface meshes from multi-view RGB images

RGB Images

Textured Surface Mesh Reconstruction

Real-time Rendering

Texture Editing

Geometry Editing

Model Composition

Downstream Applications

- 1. Geometry
- Initially learned from density grid, used Marching Cube \rightarrow to obtain coarse mesh. Using Iterative mesh refinement to Coarse Mesh obtain Fine Mesh.
- 2. Appearance Decomposition

- 1. Geometry
- Initially learned from density grid, \rightarrow Marching Cube to obtain coarse mesh
- 2. Appearance Decomposition
- 5D implicit function operates \rightarrow under no assumption of illumination or material properties

Mesh Exportation:

- Unwrap the UV coordinates of Fine Mesh
- Bake the surface's diffuse color and specular features into two separate images

n ecular features into two

LGM: Mesh Extraction

Result

Ours

Limitation

Generated Gaussians

Quiz

